

BIOSIMILARS – manufacturing and quality requirements

SARAP – Regulatory conference, Bratislava, 3rd June 2013

Monika Lang-Salchner Biopharmaceuticals, SANDOZ

Copyright 2013. Sandoz. All rights reserved

Biologics are more complex than small molecules...

...and are produced from living organisms

Modify host cells

(e.g., bacteria, mammalian yeast) to produce recombinant proteins **Grow cells** under controlled conditions (fermentation) Extract, refold, purify (downstream) – generate drug substance Formulate to stable finished drug product (vial, syringe, cartridge)

What is a biosimilar (or follow-on biologic)?

Overview

- Successor to a biologic medicine that has lost exclusivity
- Not a simple generic due to complexity: size, structure and manufacturing

Regulatory definition

• A biologic approved via a stringent regulatory pathway demonstrating comparability

Comparability approach

- Highly analogous structure (via robust analytical characterization)
- Comparable quality, safety and efficacy (via clinical trials)

Biosimilar development needs more time and budget, and is more complex than standard Gx development

Source: Sandoz analysis

Note: All pictures are the property of the respective owner

SARAP - Regulatory Conference | Bratislava, 03 June 2013 | Copyright 2013. Sandoz. All rights reserved

Biosimilar mAbs must be systematically engineered to match the reference product

Clone selection case study: Targeting originator

Example for Quality by Design: Attention to detail is essential...

Characterization of mAb glycosylation heterogeneity

High resolution identification and quantification of major (G0,G1,G2) <u>and minor</u> glycan structures (down to a level of 0.1 rel.%) —

Targeting ADCC activity and fucosylation by clone selection

After development of a highly similar molecule, similarity is confirmed by clinical studies

...and follow-on biologics that do not fulfill these high standards are not biosimilars and will not be approved in the EU

- Higher host cell protein content
- Content of aggregates not comparable
- Charge distribution not comparable
- Glycosylation not comparable
- ADCC effector function not comparable
- Clinical data: Only PK/PD study in 17 patients

Source: Mike Doherty, Global Head Regulatory Affairs, Roche Pharmaceuticals, at Roche Investor Day 2010, March 18, 2010, see http://www.roche.com/investors/ir_agenda/rid_2010.htm?track=8 and www.roche.com/irp100318_md.pdf

Today's analytical science provides a full understanding of the structure of even a mAb...

Attributes:

- Primary structure
- Mass
- Disulfide bridging
- Free cysteines
- Thioether bridging
- Higher order structure
- N- and C-terminal heterogeneity
- Glycosylation (isoforms, sialic acids, NGNA, fucosylation, alpha gal, site specific)
- Glycation
- Fragmentation
- Oxidation
- Deamidation
- Aggregation

Proteins can be well characterized at least up to the complexity of monoclonal antibodies

- Primary structure determined from recombinant DNA sequence and fully accessible to analytical verification
- Set of orthogonal analytical methods available to characterize the identity and amount of related variants with high sensitivity
- Glycosylation profile can be comprehensively determined with regard to identity and content of individual glycans with high sensitivity
- Accurate and relevant bioassays for pivotal biological functions available

Methods e.g.:

- MS (ESI, MALDI-TOF/TOF, MS/MS)
- Peptide mapping
- Ellman's
- CGE
- SDS-PAGE
- CD
- H-D exchange
- FT-IR
- HPLC
- HPAEC
- IEF
- 2AB NP-HPLC
- SE-HPLC
- FFF
- AUC
- DLS
- MALLS

Challenges of biosimilar development

- Development approach different from generics but also from new biotech drugs
 - Iterative process
 - Limits of reference product target ranges
- Heavy upfront investment in process development and characterization as well as analytical development
 - Many key developments before the first clinical trial (vs. conventional pharma model after proof-of-concept, before pivotal phase 3 trials)
- Extensive analytics very early in development
 - Analytical methods sensitive to detect differences and similarities
 - Including bioassays

TPoS of a Biosimilar mAb: Biological Characterization

Bioassays

- Target binding comparable; ADCC comparable
- CDC comparable; Apoptosis comparable

- Binding assays (SPR)
 - FcγR (RIA, RIIA, RIIB, RIIIA^{158F}, RIIIA^{158V}, RIIIB) comparable
 - FcRn comparable

Challenges of biosimilar development ctd.

- Manufacturing: targeted for biosimilar product while balanced for COGS
- Understanding of criticality of quality attributes as well as process parameters
- How close is close enough?

Target directed process development Example: Adjusting mAb variants in the bioreactor

- Charge-variants are typical productrelated variants for mAbs:
 - acidic variants (e.g. de-amidation of Asn)
 - basic variants (e.g. amidation of Pro)
 - pyroglutamate/Gln at N-terminus
 - Lys-variants at C-terminus
 - mAb fragments
- Charge-variants can be adjusted in the bioreactor by optimization of
 - process parameters
 - media components

Challenges of biosimilar development ctd.

- Manufacturing: targeted for biosimilar product while balanced for COGS
- Understanding of criticality of quality attributes as well as process parameters
- How close is close enough?
- Drug product: formulation and packaging to mirror the reference product
- Global reference product
- Shifts in reference product attributes
- Biosimilarity exercise as extreme form of comparability exercise (same scientific principles)

Biosimilars are produced under the same stringent cGMP requirements

... as innovative Biopharmaceuticals:

- Quality-by-Design based process development
- Quality Assurance approved documentation
- State-of-the-art manufacturing facilities
- Quality Assurance systems to detect deviations, out-ofspecification and out-of-trend results

Conclusions

- Biosimilars are important for improved patient access to modern biopharmaceuticals
- A targeted approach is key for successful development of biosimilars

 Biosimilar development faces big manufacturing, process development and analytical challenges - some of them common for any biopharmaceutical, some of them specific for biosimilars, but are surmountable provided a proper and state-of-the-art development of Biosimilars is done

Thank you!

Questions?

SARAP - Regulatory Conference | Bratislava, 03 June 2013 | Copyright 2013. Sandoz. All rights reserved

